Development and publication of Research and Management Techniques for the Conservation of Sea Turtles was made possible through the generous support of the Center for Marine Conservation, Convention on Migratory Species, U.S. National Marine Fisheries Service, and the Worldwide Fund for Nature.

©1999 SSC/IUCN Marine Turtle Specialist Group

Reproduction of this publication for educational and other non-commercial purposes is authorized without permission of the copyright holder, provided the source is cited and the copyright holder receives a copy of the reproduced material.

Reproduction for commercial purposes is prohibited without prior written permission of the copyright holder.

ISBN 2-8317-0364-6

Printed by Consolidated Graphic Communications, Blanchard, Pennsylvania USA

Cover art: leatherback hatchling, Dermochelys coriacea, by Tom McFarland

To order copies of this publication, please contact:

Marydele Donnelly, MTSG Program Officer
IUCN/SSC Marine Turtle Specialist Group
1725 De Sales Street NW #600
Washington, DC 20036 USA
Tel: +1 (202) 857-1684
Fax: +1 (202) 872-0619
email: mdonnelly@dccmc.org
Preface

In 1995 the IUCN/SSC Marine Turtle Specialist Group (MTSG) published *A Global Strategy for the Conservation of Marine Turtles* to provide a blueprint for efforts to conserve and recover declining and depleted sea turtle populations around the world. As unique components of complex ecosystems, sea turtles serve important roles in coastal and marine habitats by contributing to the health and maintenance of coral reefs, seagrass meadows, estuaries, and sandy beaches. The *Strategy* supports integrated and focused programs to prevent the extinction of these species and promotes the restoration and survival of healthy sea turtle populations that fulfill their ecological roles.

Sea turtles and humans have been linked for as long as people have settled the coasts and plied the oceans. Coastal communities have depended upon sea turtles and their eggs for protein and other products for countless generations and, in many areas, continue to do so today. However, increased commercialization of sea turtle products over the course of the 20th century has decimated many populations. Because sea turtles have complex life cycles during which individuals move among many habitats and travel across ocean basins, conservation requires a cooperative, international approach to management planning that recognizes inter-connections among habitats, sea turtle populations, and human populations, while applying the best available scientific knowledge.

To date our success in achieving both of these tasks has been minimal. Sea turtle species are recognized as “Critically Endangered,” “Endangered” or “Vulnerable” by the World Conservation Union (IUCN). Most populations are depleted as a result of unsustainable harvest for meat, shell, oil, skins, and eggs. Tens of thousands of turtles die every year after being accidentally captured in active or abandoned fishing gear. Oil spills, chemical waste, persistent plastic and other debris, high density coastal development, and an increase in ocean-based tourism have damaged or eliminated important nesting beaches and feeding areas.

To ensure the survival of sea turtles, it is important that standard and appropriate guidelines and criteria be employed by field workers in all range states. Standardized conservation and management techniques encourage the collection of comparable data and enable the sharing of results among nations and regions. This manual seeks to address the need for standard guidelines and criteria, while at the same time acknowledging a growing constituency of field workers and policy-makers seeking guidance with regard to when and why to invoke one management option over another, how to effectively implement the chosen option, and how to evaluate success.

The IUCN Marine Turtle Specialist Group believes that proper management cannot occur in the absence of supporting and high quality research, and that scientific research should focus, whenever possible, on critical conservation issues. We intend for this manual to serve a global audience involved in the protection and management of sea turtle resources. Recognizing that the most successful sea turtle protection and management programs combine traditional census techniques with computerized databases, genetic analyses and satellite-based telemetry techniques that practitioners a generation ago could only dream about, we dedicate this manual to the resource managers of the 21st century who will be facing increasingly complex resource management challenges, and for whom we hope this manual will provide both training and counsel.

Karen L. Eckert
Karen A. Bjorndal
F. Alberto Abreu Grobois
Marydele Donnelly
Editors
Table of Contents

1. **Overview**

 An Introduction to the Evolution, Life History, and Biology of Sea Turtles .. 3
 A. B. Meylan and P. A. Meylan

 Designing a Conservation Program ... 6
 K. L. Eckert

 Priorities for Studies of Reproduction and Nest Biology ... 9
 J. I. Richardson

 Priorities for Research in Foraging Habitats ... 12
 K. A. Bjorndal

 Community-Based Conservation ... 15
 J. G. Frazier

2. **Taxonomy and Species Identification**

 Taxonomy, External Morphology, and Species Identification ... 21
 P. C. H. Pritchard and J.A. Mortimer

3. **Population and Habitat Assessment**

 Habitat Surveys .. 41
 C. E. Diez and J. A. Ottenwalder

 Population Surveys (Ground and Aerial) on Nesting Beaches ... 45
 B. Schroeder and S. Murphy

 Population Surveys on Mass Nesting Beaches .. 56
 R. A. Valverde and C. E. Gates

 Studies in Foraging Habitats: Capturing and Handling Turtles .. 61
 L. M. Ehrhart and L. H. Ogren

 Aerial Surveys in Foraging Habitats .. 65
 T. A. Henwood and S. P. Epperly

 Estimating Population Size ... 67
 T. Gerrodette and B. L. Taylor

 Population Identification ... 72
 N. FitzSimmons, C. Moritz and B. W. Bowen
4. Data Collection and Methods

Defining the Beginning: the Importance of Research Design ... 83
J. D. Congdon and A. E. Dunham

Data Acquisition Systems for Monitoring Sea Turtle Behavior and Physiology 88
S. A. Eckert

Databases ... 94
R. Briseño-Dueñas and F. A. Abreu-Grobois

Factors to Consider in the Tagging of Sea Turtles .. 101
G. H. Balazs

Techniques for Measuring Sea Turtles ... 110
A. B. Bolten

Nesting Periodicity and Internesting Behavior ... 115
J. Alvarado and T. M. Murphy

Reproductive Cycles and Endocrinology ... 119
D. Wm. Owens

Determining Clutch Size and Hatching Success .. 124
J. D. Miller

Determining Hatchling Sex .. 130
H. Merchant Larios

Estimating Hatchling Sex Ratios ... 136
M. Godfrey and N. Mrosovsky

Diagnosing the Sex of Sea Turtles in Foraging Habitats ... 139
T. Wibbels

Diet Sampling and Diet Component Analysis .. 144
G. A. Forbes

Measuring Sea Turtle Growth ... 149
R. P. van Dam

Stranding and Salvage Networks ... 152
D. J. Shaver and W. G. Teas

Interviews and Market Surveys ... 156
C. Tambiah
5. Reducing Threats

Reducing Threats to Turtles ... 165
M. A. G. Marcovaldi and C. A. Thomé

Reducing Threats to Eggs and Hatchlings: *In Situ* Protection .. 169
R. H. Boulon, Jr.

Reducing Threats to Eggs and Hatchlings: Hatcheries ... 175
J. A. Mortimer

Reducing Threats to Nesting Habitat ... 179
B. E. Witherington

Reducing Threats to Foraging Habitats ... 184
J. Gibson and G. Smith

Reducing Incidental Catch in Fisheries ... 189
C. A. Oravetz

6. Husbandry, Veterinary Care, and Necropsy

Ranching and Captive Breeding Sea Turtles: Evaluation as a Conservation Strategy 197
J. P. Ross

Rehabilitation of Sea Turtles ... 202
M. Walsh

Infectious Diseases of Marine Turtles .. 208
L. H. Herbst

Tissue Sampling and Necropsy Techniques .. 214
E. R. Jacobson

7. Legislation and Enforcement

Grassroots Stakeholders and National Legislation ... 221
H. A. Reichart

Regional Collaboration ... 224
R. B. Trono and R. V. Salm

International Conservation Treaties ... 228
D. Hykle

Forensic Aspects .. 232
A. A. Colbert, C. M. Woodley, G. T. Seaborn, M. K. Moore and S. B. Galloway
Aerial Surveys in Foraging Habitats

Tyrrell A. Henwood
NOAA National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratory, P. O. Drawer 1207, Pascagoula, Mississippi 39568 USA; Tel: +1 (228) 762-4591; Fax: +1 (228) 769-9200; email: terry.henwood@noaa.gov

Sheryan P. Epperly
NOAA National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149 USA; Tel: +1 (305) 361-4207; Fax: +1 (305) 361-4478; email: sheryan.epperly@noaa.gov

One proven method of obtaining at-sea information on sea turtle distribution and abundance is the use of trained observers aboard aircraft. This technique is applicable to sea turtles because they must surface periodically to breathe, and a fraction of the turtles in an area will be on the surface and available for counting at any given time. This fact is well supported by radio, sonic and satellite tracking experiments where surfacing behavior of several turtle species has been documented. The applicability of this technique for population estimation is dependent upon overall objectives, funding levels, area size, target species, turtle size, turtle abundance, observer experience, and a number of other factors.

Theory

Every biologist has at some point been exposed to the concept of sampling to estimate the total population. With aerial surveys, this sampling is in the form of transects through an area during which all sightings are recorded. Sightings from each transect are converted to sightings per unit area and extrapolated to estimate the population for the total study area. In the case of sea turtles, this estimate is for turtles on the surface, not the total population. To estimate the total population, it is necessary to determine the proportion of turtles on the surface and correct the surface densities accordingly.

Two commonly used analytical approaches for estimating the area covered along a transect are line-transect and strip-transect. Both have been used for analyzing aerial survey data; if the distance of each sighting from the transect is measured, either method of analysis can be used for analyzing the data. For additional discussion on the strengths and weaknesses of the two approaches refer to Buckland *et al.* (1993), Cormack *et al.* (1979), and Epperly *et al.* (1995). For a discussion of the analysis of the data, see Gerrodette and Taylor (this volume).

Methods

Aircraft selection is important in planning an aerial survey. A single engine aircraft may be adequate for low budget operations in nearshore waters (within gliding distance of land). Larger twin-engine aircraft are recommended for offshore operations. Plexiglass bubbles on the sides or in the nose of the aircraft providing forward, aft, and downward trackline visibility are essential to meet the assumptions of line-transect theory.

Aircraft should be equipped with a Global Positioning System (GPS) or other navigational system which ideally is interfaced with an onboard laptop computer for continuous position recording. Flight altitude and airspeed should be constant within a study and depend upon primary objectives of the survey and variables such as species of turtle, size, sex, behavior, study area, and a number of other factors. For studies of sea turtles, altitudes should be about 150m (500ft) or less and airspeed should be 150 to 225km/hr.

The perpendicular distance of each sighting from the transect can be determined using clinometers and/or interval marks on plexiglass bubbles, window frames, wing struts, or other fixed aircraft parts. For
all sightings, the location, time, environmental parameters, distance from trackline, turtle species, and associated species are normally recorded. The survey team usually consists of two or more observers and a data recorder to ensure constant viewing from both sides of the aircraft.

In theory, the minimum distance between transects is determined by the maximum swimming speed of the target species, so that multiple counts of the same individual do not occur. In reality, however, transect spacing generally relates to practical considerations of how much effort can be devoted to an area to accomplish the overall survey objectives; usually it is available effort that limits the number of transects. To maximize the effectiveness of individual surveys, transect length should be selected on the basis of area to be surveyed, available time, aircraft, and survey objectives. Transects are usually parallel to each other (primarily for logistical reasons) and are perpendicular to gradients (such as depth) that may affect turtle density. The more transects flown, the more accurate the estimation of density, assuming that transects are spaced far enough apart to avoid multiple counts of the same individual.

Environmental conditions influence whether a flight should be conducted. Safety is of utmost importance. Safety equipment, such as a life raft, survival kit, flares, and VHF radio, should be carried on all over-water flights. Survival suits should be standard equipment when flying over cold water. Secondly, sea state influences the ability of observers to detect turtles on the surface and also may affect turtle behavior. Ideally, flights should be conducted only when sea states are less than 0.6m with no or few whitecaps (e.g., Beaufort Sea State -2). Lastly, glare is a confounding factor. Flights should be conducted as close to noon as possible to minimize glare. Researchers should consider issuing polarized sunglasses to all observers to standardize for glare as much as possible.

The ability to determine turtle species depends on observer experience. Experienced observers comment that color, rather than silhouette, is most important in identifying sea turtle species from the air. When a determination of species cannot be made, it is sometimes useful to indicate whether the sighting represents a leatherback (Dermochelys) turtle or a hard-shelled species; in this case, the silhouette is diagnostic.

Discussion

Aerial surveys are probably most appropriate when very little is known about turtle distributions and abundance over relatively large areas. In such a case, the aerial survey would be used to determine turtle distribution and abundance and to identify “hot spots” for future in-water studies. Aerial surveys are also appropriate for documenting seasonal or annual variations in distribution and abundance patterns.

Anyone contemplating the use of this technique should carefully consider the types of data that can and cannot be obtained from the air. No biological information (e.g., size, weight, sex, condition, age, growth, tags) can be acquired from aerial sightings. This type of information must be obtained from in-water studies (see Ehrhart and Orgren, this volume) that should be conducted in conjunction with aerial surveys for purposes of ground-truthing. In addition, some level of radio and sonic tracking (see S. Eckert, this volume) is essential to determine the proportion of time spent at the surface by turtles within the study area. The major advantage of aerial surveys rests in the fact that they are a relatively fast way of obtaining a quasi-synoptic picture of turtle distribution and abundance over broad study areas.

Aerial surveys are not something that can be accomplished easily. Observer experience is critical to the success of an aerial survey. Untrained and/or inexperienced observers often have difficulty seeing turtles from an aircraft. Skill in sighting and identifying turtles improves with time, and every effort should be made to ensure that a survey is not dominated by inexperienced observers.

Literature Cited

