Research and Management Techniques for the Conservation of Sea Turtles

Prepared by IUCN/SSC Marine Turtle Specialist Group

Edited by
Karen L. Eckert
Karen A. Bjorndal
F. Alberto Abreu-Grobois
M. Donnelly
Preface

In 1995 the IUCN/SSC Marine Turtle Specialist Group (MTSG) published *A Global Strategy for the Conservation of Marine Turtles* to provide a blueprint for efforts to conserve and recover declining and depleted sea turtle populations around the world. As unique components of complex ecosystems, sea turtles serve important roles in coastal and marine habitats by contributing to the health and maintenance of coral reefs, seagrass meadows, estuaries, and sandy beaches. The *Strategy* supports integrated and focused programs to prevent the extinction of these species and promotes the restoration and survival of healthy sea turtle populations that fulfill their ecological roles.

Sea turtles and humans have been linked for as long as people have settled the coasts and plied the oceans. Coastal communities have depended upon sea turtles and their eggs for protein and other products for countless generations and, in many areas, continue to do so today. However, increased commercialization of sea turtle products over the course of the 20th century has decimated many populations. Because sea turtles have complex life cycles during which individuals move among many habitats and travel across ocean basins, conservation requires a cooperative, international approach to management planning that recognizes inter-connections among habitats, sea turtle populations, and human populations, while applying the best available scientific knowledge.

To date our success in achieving both of these tasks has been minimal. Sea turtle species are recognized as “Critically Endangered,” “Endangered” or “Vulnerable” by the World Conservation Union (IUCN). Most populations are depleted as a result of unsustainable harvest for meat, shell, oil, skins, and eggs. Tens of thousands of turtles die every year after being accidentally captured in active or abandoned fishing gear. Oil spills, chemical waste, persistent plastic and other debris, high density coastal development, and an increase in ocean-based tourism have damaged or eliminated important nesting beaches and feeding areas.

To ensure the survival of sea turtles, it is important that standard and appropriate guidelines and criteria be employed by field workers in all range states. Standardized conservation and management techniques encourage the collection of comparable data and enable the sharing of results among nations and regions. This manual seeks to address the need for standard guidelines and criteria, while at the same time acknowledging a growing constituency of field workers and policy-makers seeking guidance with regard to when and why to invoke one management option over another, how to effectively implement the chosen option, and how to evaluate success.

The IUCN Marine Turtle Specialist Group believes that proper management cannot occur in the absence of supporting and high quality research, and that scientific research should focus, whenever possible, on critical conservation issues. We intend for this manual to serve a global audience involved in the protection and management of sea turtle resources. Recognizing that the most successful sea turtle protection and management programs combine traditional census techniques with computerized databases, genetic analyses and satellite-based telemetry techniques that practitioners a generation ago could only dream about, we dedicate this manual to the resource managers of the 21st century who will be facing increasingly complex resource management challenges, and for whom we hope this manual will provide both training and counsel.

Karen L. Eckert
Karen A. Bjorndal
F. Alberto Abreu Grobois
Marydele Donnelly
Editors
Table of Contents

1. Overview

An Introduction to the Evolution, Life History, and Biology of Sea Turtles ... 3

* A. B. Meylan and P. A. Meylan

Designing a Conservation Program ... 6

* K. L. Eckert

Priorities for Studies of Reproduction and Nest Biology ... 9

* J. I. Richardson

Priorities for Research in Foraging Habitats ... 12

* K. A. Bjorndal

Community-Based Conservation .. 15

* J. G. Frazier

2. Taxonomy and Species Identification

Taxonomy, External Morphology, and Species Identification .. 21

* P. C. H. Pritchard and J.A. Mortimer

3. Population and Habitat Assessment

Habitat Surveys ... 41

* C. E. Diez and J. A. Ottenwalder

Population Surveys (Ground and Aerial) on Nesting Beaches .. 45

* B. Schroeder and S. Murphy

Population Surveys on Mass Nesting Beaches ... 56

* R. A. Valverde and C. E. Gates

Studies in Foraging Habitats: Capturing and Handling Turtles ... 61

* L. M. Ehrhart and L. H. Ogren

Aerial Surveys in Foraging Habitats .. 65

* T. A. Henwood and S. P. Epperly

Estimating Population Size ... 67

* T. Gerrodette and B. L. Taylor

Population Identification .. 72

* N. FitzSimmons, C. Moritz and B. W. Bowen
4. Data Collection and Methods

Defining the Beginning: the Importance of Research Design .. 83
J. D. Congdon and A. E. Dunham

Data Acquisition Systems for Monitoring Sea Turtle Behavior and Physiology 88
S. A. Eckert

Databases ... 94
R. Briseño-Dueñas and F. A. Abreu-Grobois

Factors to Consider in the Tagging of Sea Turtles ... 101
G. H. Balazs

Techniques for Measuring Sea Turtles .. 110
A. B. Bolten

Nesting Periodicity and Internesting Behavior ... 115
J. Alvarado and T. M. Murphy

Reproductive Cycles and Endocrinology .. 119
D. Wm. Owens

Determining Clutch Size and Hatching Success ... 124
J. D. Miller

Determining Hatchling Sex .. 130
H. Merchant Larios

Estimating Hatchling Sex Ratios .. 136
M. Godfrey and N. Mrosovsky

Diagnosing the Sex of Sea Turtles in Foraging Habitats ... 139
T. Wibbels

Diet Sampling and Diet Component Analysis .. 144
G. A. Forbes

Measuring Sea Turtle Growth ... 149
R. P. van Dam

Stranding and Salvage Networks .. 152
D. J. Shaver and W. G. Teas

Interviews and Market Surveys .. 156
C. Tambiah
5. Reducing Threats

Reducing Threats to Turtles ... 165
M. A. G. Marcovaldi and C. A. Thomé

Reducing Threats to Eggs and Hatchlings: In Situ Protection .. 169
R. H. Boulon, Jr.

Reducing Threats to Eggs and Hatchlings: Hatcheries ... 175
J. A. Mortimer

Reducing Threats to Nesting Habitat ... 179
B. E. Witherington

Reducing Threats to Foraging Habitats .. 184
J. Gibson and G. Smith

Reducing Incidental Catch in Fisheries ... 189
C. A. Oravetz

6. Husbandry, Veterinary Care, and Necropsy

Ranching and Captive Breeding Sea Turtles: Evaluation as a Conservation Strategy 197
J. P. Ross

Rehabilitation of Sea Turtles .. 202
M. Walsh

Infectious Diseases of Marine Turtles ... 208
L. H. Herbst

Tissue Sampling and Necropsy Techniques .. 214
E. R. Jacobson

7. Legislation and Enforcement

Grassroots Stakeholders and National Legislation .. 221
H. A. Reichart

Regional Collaboration .. 224
R. B. Trono and R. V. Salm

International Conservation Treaties .. 228
D. Hykle

Forensic Aspects ... 232
Stranding and Salvage Networks

Donna J. Shaver
U.S. Geological Survey, Padre Island National Seashore, P.O. Box 181300, Corpus Christi, Texas 78480-1300 USA; Tel: +1 (361) 949-8173, ext. 226; Fax: +1 (361) 949-8023; email: donna_shaver@nps.gov

Wendy G. Teas
Sea Turtle Stranding and Salvage Network, NOAA National Marine Fisheries Service, Southeast Fisheries Science Center, 75 Virginia Beach Drive, Miami, Florida 33149 USA; Tel: +1 (305) 361-4595; Fax: +1 (305) 361-4478; email: wendy.teas@noaa.gov

Overview: The Importance of a Network

Stranded sea turtles are defined as those that wash ashore dead or alive or are found floating dead or alive (generally in a weakened condition). Sea turtles strand in the vicinity of migratory routes, foraging habitats, developmental habitats, and nesting beaches. The numbers that strand are typically influenced by a variety of factors and vary at different geographical locations and during different years and seasons.

Systematic data gathering for stranded sea turtles can provide resource managers and scientists with biological information useful in improving the conservation and management of these species. Data gathering is best accomplished through a formal stranding and salvage network that can document stranded sea turtles, salvage dead individuals for necropsy, and transport live individuals to rehabilitation facilities. Data collected through the network can be used to identify sources of mortality, document locations of negative human/sea turtle interactions, evaluate the effectiveness of various regulations, and serve as a basis for management decisions. Documenting stranded sea turtles and associated tag returns can enhance an understanding of species composition, distribution, seasonality, sizes, migratory patterns, and habitat use. Through salvage, necropsy, and specimen collection from dead stranded turtles, information is obtained on sex ratios, diseases, foraging ecology, and other topics. Live stranded sea turtles that are located and taken to appropriate rehabilitation facilities can often be successfully rehabilitated and released back into the wild.

A national Sea Turtle Stranding and Salvage Network (STSSN) has operated in the USA since 1980. It serves as a basis for many of the protocols and recommendations offered in this chapter.

Network Components

Network Participants and Coordinators

Funding is typically limited; thus, it is recommended that most participants and coordinators volunteer to provide data without compensation. Whenever possible, these volunteers should be trained biologists who understand the importance of accurate data collection, and who will be able to participate in the network for several years. Among those that should be considered to participate are employees of natural resource agencies, zoos and aquaria, as well as park managers, educators and dedicated local residents. Once informed about the importance of the stranding network, employers may allow participation in network activities during normal work hours. In order to facilitate timely data collection, participants should be distributed throughout the geographical area where the network will operate, and they should receive training in standardized data collection protocols.

A Network Coordinator, as well as several Regional Coordinators, should be designated. Each Regional Coordinator should be located within a specific geographical area and oversee network activi-
ties conducted there. The Network Coordinator should be an employee of the agency willing to commit to the long-term maintenance of a central computerized database that will contain all stranding records.

Detection of Stranded Turtles

Network participants document turtles stranded within their geographical area. Stranded turtles are detected either by network participants or by other individuals who report the turtles. Participants should immediately attempt to find turtles reported alive, so that they do not succumb prior to transfer to rehabilitation facilities, and promptly attempt to locate those reported dead, so that they do not deteriorate appreciably before data collection.

Turtles may be detected opportunistically, or during surveys designed specifically to identify stranded turtles. Depending on funding and time availability, surveys can be undertaken intermittently or systematically. If systematic monitoring is undertaken, surveys should be made from 1-3 times per week so that turtles can be located before they deteriorate or are taken by people or predators. “Index areas” for systematic monitoring can be established if those areas are surveyed consistently and effort expended is recorded. Regardless of the method used to detect stranded turtles, the numbers documented should be considered minimum stranding figures since they represent only reported strandings and not all stranding events.

Documentation of Stranded Turtles

Each stranded turtle located should be documented by a network participant on a standardized form. The form used by the STSSN is included as an example (Figure 1). Managers and researchers establishing networks in other areas will likely need to modify the STSSN form to meet their specific needs. Only one standardized form should be developed and used for a particular network. The form should include the data parameters and notation codes listed below, but contain only those species occurring within the geographical area covered by the network. It should be as short, concise, self-contained, and easy to complete as possible. The data to be collected for each stranded turtle should be printed on the front; a species guide and the Regional Coordinator’s address should be printed on the back.

All data parameters listed on the standardized form should be recorded for each turtle. Straight and curved carapace length and width should be measured using standard methodology (see Bolten, this volume). Straight line measurements made with calipers are more accurate than curved measurements made with a flexible tape. Attempts to determine sex using blood serum testosterone assays, laparoscopy, and examination of gonads during necropsy should be noted. It is not recommended to use tail length to identify sex since this method is unreliable for decomposed carcasses and immature turtles.

If possible, each stranded turtle should be photographed at the stranding site, necropsy location, or rehabilitation facility. Photographs provide additional documentation of the stranding authenticity and characteristics. Network participants should immediately submit each completed original stranding form to the appropriate Regional Coordinator, who should immediately review it for accuracy and submit it to the Network Coordinator. Both the network participant and Regional Coordinator should retain a copy of each form for archival and reference purposes.

Other Associated Activities for Stranded Turtles

Once an animal has been documented, it should be marked or removed from the stranding site (to prevent it being counted again). Live stranded turtles should be transported to rehabilitation facilities (the facility should be noted on the data form). Dead stranded turtles (fresh or moderately decomposed) and live stranded turtles that succumb during rehabilitation efforts can be salvaged for necropsy and specimen removal and are an important resource for obtaining additional information. Necropsies should be conducted using standardized protocol (see Jacobson, this volume). Dead turtles not salvaged for necropsy should be buried high on the beach or pulled behind the dunes. It is not recommended to mark them with paint or other materials since these markings usually disappear over time.

Acknowledgments

We would like to thank participants of the USA’s Sea Turtle Stranding and Salvage Network, including those early participants who developed the standardized stranding form and protocols used by the network today, and those participants who have continued the network’s activities.
Record Keeping: Standard Information for a Data Form

1. Observer’s name, address, telephone number
2. Turtle number by day (enter a consecutive number for the individual observer for that day)
3. Stranding date (enter yr / month / day)
4. Stranding location in reference to the closest town or landmark. Include county, state, or other relevant geographical breakdown, as well as latitude and longitude. Note whether stranding was located inshore (bays, estuaries, or passes and their beaches) or offshore (oceans and their beaches).
5. Species code: CC = Loggerhead; CM = Green/Black; DC = Leatherback; EI = Hawksbill; LK = Kemp’s ridley; LO = Olive ridley; ND = Flatback; UN = Unknown
6. Reliability of species identification (indicate “unsure”, “probable”, or “positive”).
7. Species verified by Regional Coordinator (“yes” or “no”)
8. Sex of turtle (“female”, “male”, or “undetermined”)
9. How sex was determined (enter the method used)
10. Condition of turtle, coded as follows: 0 = Alive; 1 = Fresh dead; 2 = Moderately decomposed; 3 = Severely decomposed; 4 = Dried carcass; 5 = Skeleton, bones only.
11. Final disposition of turtle, coded as follows: 1 = Painted, left on beach; 2 = Buried, on beach/off beach; 3 = Salvaged specimen, all or part; 4 = Pulled up on beach or dune; 5 = Unpainted, left on beach; 6 = Alive, released; 7 = Alive, taken to holding facility.
12. Tag number(s). Enter type of tag (metal, plastic, PIT, living, etc.), tag numbers, tag position, tag return address, and disposition of tag. Draw located tags on the diagram.
13. Remarks. Enter information on tar or oiling, gear or debris entanglement, wounds or mutilation, propeller damage, papillomas, epizoa, etc. Draw noted items on the diagram.
14. Measurements (straight length / width; curved length / width). Circle measurement units.
SEA TURTLE STRANDING AND SALVAGE NETWORK – STRANDING REPORT

PLEASE PRINT CLEARLY AND FILL IN ALL APPLICABLE BLANKS. Use codes below. Measurements may be straight line (caliper) and/or over the curve (tape measure). Measure length from the center of the nuchol notch to the tip of the most posterior marginal. Measure width at the widest point of carapace. CIRCLE THE UNITS USED. See diagram below. Please give a specific location description. INCLUDE LATITUDE AND LONGITUDE.

Observer’s Full Name___ Stranding Date __________________________
Address / Affiliation
Area Code / Phone Number ___
Species ____________________________ Turtle Number By Day __________________________
Reliability of I.D.: (CIRCLE) Unsure Probably Positive Species Verified by State Coordinator? Yes h No h
Sex: (CIRCLE) Female Male Undetermined How was sex determined? _________________________________
State __County __________________________
Location (be specific and include closest town)__

Latitude ______________________________________ Longitude __
Condition of the Turtle (use codes) ___________________________ Final Disposition of Turtle (use codes) __________________
Tag Number(s) (include tag return address and disposition of tag) ___

Remarks (note if turtle was involved with tar or oil, gear of debris entanglement, wounds or mutilations, propeller damage, papillomas, epizoa, etc.) continue on back if necessary.

MEASUREMENTS: CIRCLE UNITS

Straight Length __________ cm/in
Straight Width ___________ cm/in
Curved Length ___________ cm/in
Curved Width ___________ cm/in
Mark wounds, abnormalities and tag locations

CODES

SPECIES:
CC = Loggerhead
CM = Green
DC = Leatherback
EI = Hawksbill
LK = Kemp’s Ridley
UN = Unidentified

CONDITION OF TURTLE:
0 = Alive
1 = Fresh dead
2 = Moderately decomposed
3 = Severely decomposed
4 = Dried carcass
5 = Skeleton, bones only

FINAL DISPOSITION OF TURTLE:
1 = Painted, left on beach
2 = Buried: on beach / off beach
3 = Salvaged specimen: all / part
4 = Pulled up on beach or dune
5 = Unpainted, left on beach
6 = Alive, released
7 = Alive, taken to a holding facility

Figure 1. STSSN standardized stranding form